Conditional Density Estimation via Least-Squares Density Ratio Estimation

نویسندگان

  • Masashi Sugiyama
  • Ichiro Takeuchi
  • Taiji Suzuki
  • Takafumi Kanamori
  • Hirotaka Hachiya
  • Daisuke Okanohara
چکیده

Estimating the conditional mean of an inputoutput relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation. Our basic idea is to express the conditional density in terms of the ratio of unconditional densities, and the ratio is directly estimated without going through density estimation. Experiments using benchmark and robot transition datasets illustrate the usefulness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Least-Squares Conditional Density Estimation

---Conditional density estimation is an useful alternative to regression to learn an input-output relationship under multi-modality, asymmetry, and heteroscedasticity. The supervised learning method called least-squares conditional density estimation (LSCDE) is the state-of-the-art method that directly estimates the conditional density using a linear model. In this paper, we extend the supervis...

متن کامل

Density Ratio Estimation: A New Versatile Tool for Machine Learning

A new general framework of statistical data processing based on the ratio of probability densities has been proposed recently and gathers a great deal of attention in the machine learning and data mining communities [1–17]. This density ratio framework includes various statistical data processing tasks such as non-stationarity adaptation [18, 1, 2, 4, 13], outlier detection [19–21, 6], and cond...

متن کامل

Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search

Methods for directly estimating the ratio of two probability density functions have been actively explored recently since they can be used for various data processing tasks such as non-stationarity adaptation, outlier detection, and feature selection. In this paper, we develop a new method which incorporates dimensionality reduction into a direct density-ratio estimation procedure. Our key idea...

متن کامل

Estimation in a class of nonlinear heteroscedastic time series models

Abstract: Parameter estimation in a class of heteroscedastic time series models is investigated. The existence of conditional least-squares and conditional likelihood estimators is proved. Their consistency and their asymptotic normality are established. Kernel estimators of the noise’s density and its derivatives are defined and shown to be uniformly consistent. A simulation experiment conduct...

متن کامل

Efficient Estimation of the Density and Cumulative Distribution Function of the Generalized Rayleigh Distribution

The uniformly minimum variance unbiased (UMVU), maximum likelihood, percentile (PC), least squares (LS) and weighted least squares (WLS) estimators of the probability density function (pdf) and cumulative distribution function are derived for the generalized Rayleigh distribution. This model can be used quite effectively in modelling strength data and also modeling general lifetime data. It has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010